The spatial distribution of patchy insect populations is partly caused by behavioral patterns of insect movement that are influenced by habitat quality, isolation, and the permeability of the surrounding matrix. We recorded insect movements, abundance, and edge behaviors in two species of butterflies, the great-spangled fritillary (Speyeria cybele F., Lepidoptera: Nymphalidae) and the pearl crescent (Phyciodes tharos Drury, Lepidoptera: Nymphalidae), inhabiting remnant prairies surrounded by a forest matrix in south-central Ohio. We also determined the number of forest matrix types present and recorded the permeability of the different types to butterfly movement. The great-spangled fritillary exhibited a relatively high number of interpatch movements, a higher abundance at patch edges, and a propensity to cross the prairie-forest edges, and the forest matrix had a high permeability to butterfly movement. The pearl crescent, in contrast, rarely crossed edge boundaries, moved infrequently among patches, and was more abundant within the patch interior and in patches with high host-plant and flower densities. There were three structurally different forest matrix types separating habitat patches, which in previous studies would have been classified as a single deciduous forest matrix. Butterfly movement and edge behaviors mechanistically interact with patch quality, isolation, and the matrix permeability to determine the spatial structure of these populations in fragmented habitats.
How to translate text using browser tools
1 August 2008
Butterfly Abundance and Movements Among Prairie Patches: The Roles of Habitat Quality, Edge, and Forest Matrix Permeability
David J. Stasek,
Caitlin Bean,
Thomas O. Crist
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
connectivity
dispersal
Lepidoptera
matrix habitat
metapopulation